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In many cases, the spectrum of one graph contains the entire spectrum of a 
second, smaller graph. The larger (composite) graph and the smaller (component) 
graph are said to be subspectral. Rules are given for constructing two sub- 
spectral components of a composite graph which has threefold symmetry 
such that the eigenvalues of one component and the eigenvalues of the second 
component taken twice comprise the complete spectrum of the composite 
graph. The mathematical basis for these rules is shown to be a unitary trans- 
formation upon the eigenvalue equation of the adjacency matrix of the com- 
posite graph by the matrix which represents threefold rotation. 
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1. Introduction 

Graph theory has been shown to be an appropriate tool for the analysis of topo- 
logically-related molecular properties [1 ]. When applied to the study of conjugated 
hydrocarbons, a graph theoretical treatment is fully equivalent to a simple Hiickel 
molecular orbital (HMO) treatment [2-4], since the Hiickel parameters for such 
molecules depend only on the adjacency relationships between and among the 
atoms. In particular, the HMO energy levels for a molecule of this type are identical 
to the eigenvalues of the adjacency matrix of the graph which has the same pattern 
of connectedness as the molecule. 

In examining tabulated eigenvalues [5], it can be seen that, in many cases, the 
entire spectrum of one graph is contained in the spectrum of a second, larger 
graph. In such a case, the larger (composite) graph and the smaller (component) 
graph are said to be subspectral [6]. Whether such a relationship has any signi- 
ficance for the properties of the corresponding conjugated molecules is uncertain 
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[7]. In any case, this sharing of eigenvalues is a curious phenomenon which has 
been previously noted by others who have provided explanations for its occurrence 
in several special structural classes [6, 8-11]. A procedure is given here for con- 
structing the subspectral components of a composite graph which possesses 
threefold symmetry. 

2. Construction of the Component Graphs 

Consider a graph G characterized by a threefold rotational operation which defines 
three equivalent sets of vertices r, s, and t, and possibly a self-equivalent vertex q 
lying on the axis of rotation. The following rules may be used to construct two 
graphs, G~ and Ge, such that the eigenvalues of G~ and the eigenvalues of G~ 
taken twice comprise the full spectrum of G. 

1. First, the vertices in set r are drawn, together with all the edges connecting 
members of the set. Then the vertices through which r is connected to s, t, 
and possibly q (the bridging vertices of r) are examined in G. 

2. I f  a bridging vertex rl is connected to a vertex t2 which is symmetry-equivalent 
to a second bridging vertex r2, then the weight of the undirected edge between 
rl and r2 in G (+  1 if they are adjacent, zero if they are not) is increased by one 
unit in G,. In G~, the weight of the directed edge from r2 to rl is increased by 
~o = exp (2ni/3), and the weight of the directed edge from r~ to r2 is increased 
by ~o* = exp ( -  2~ri/3). Furthermore, if these directed edges do not belong to a 
cycle in G,, they may be replaced by an undirected edge whose weight is equal 
to the square root of the product of the weights of the directed edges, i.e. 
either v'o~co* = 1 or a/(1 + co)(1 + co*) = 1. (An explanation of the last 
statement is given in an appendix.) 

3. I f  a bridging vertex rl is connected to its own symmetry partners sz and t~ in 
G, then rl is weighted + 2 in G~ and (co + ~o*) = - 1 in G,. 

4. I f  rx is connected to q in G, then the weight of the undirected edge between 
rx and q is ~/3 in G~; in G~, this edge and the vertex q are omitted. 

The application of these rules may be illustrated by the following examples. 

2 

I Ga(I )  Ge(I) 

r 2 , , ~  2 ~ rl r2 rl r2 

I I Gca(I I) Ge( l l )  
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t2 

rl 0 tl rl ---~---- r 2 r 1 ! ~ - - r 2  -~ rl ' r  2 
r 2 s2 

s I 

I I I  Ga( I I I )  Ge( l l l )  

The bridging vertices in I, H, and HI and the weighted edges and vertices of their 
respective component graphs have been labelled. 

3. Proof 

The rules for constructing the subspectral components of a composite graph 
having threefold symmetry originate in the symmetry properties of the adjacency 
matrix of the composite graph. 

Consider a threefold-symmetric composite graph which contains 3N vertices, N 
vertices in each of the equivalent sets r, s, and t. (Exclude, for the present, any 
graph containing a vertex q on the axis of rotation.) Let such a graph be denoted 
by G1. If the vertices of G1 are numbered in such a way that the number assigned 
to each vertex in s is N greater than the number assigned to its symmetry partner 
in r and N less than the number assigned to its symmetry partner in t, then the 
adjacency matrix of G1 has the form 

A(G1) = B3 B1 112 �9 

B2 Bz B1 

The elements of the symmetric submatrix B1 represent the adjacency relationships 
within a single set, r, s, or t; the elements of B2 and B3 = (//2) T represent the 
adjacency relationships between r and s, r and t, and s and t. 
The eigenvalue equation for A(GI)  is 

,(i) A(G1 = e �9 

A unitary transformation on A ( Q )  and its eigenvector may be performed by the 
matrix which represents the threefold rotational operation: 

C a =  0 ~o =C~* 

oJ*l 

where co = exp (2rri/3). The transformed eigenvalue equation is 
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o r  

oJB2 Bz oJ*B3l oJw = e cow 

\ co* Ba oJB2 B1/  oJ*v oJ*v 

where the identities oJ 2 = ~o*, (w.)2 = ~o, and oJoJ* = 1 have been employed. 

Performance of the matrix multiplication gives three equations: 

B~u + (~o*B~)(~ow) + (o~B2)(~*v) = ~u, O) 
(oJB2)u + Bl(oJw) + (oJ*B3)(w*v) = eoJw, (2) 
(~o*B~)u + (o~B~)(o~w) + Bl(~*v)  = ~ * v .  (3) 

These equations may be combined in several ways. The linearly independent 
combinations (1) + co*(2) + oJ(3), (1) + oJ(2) + co*(3), and (1) + (2) + (3) lead 
respectively to Eqs. (4), (5), and (6): 

(B1 + B2 + Ba)(u + v +  w) = e(u + v + w), (4) 
(B~ + ~*B~ + ~oB~)(u + ~*w + ~ov) = ~(u + ~o*w + ~v), (5) 
(B~ + coB2 + o)*B3)(u + ~ow + w'v) = e(u + o~w + ~o*v). (6) 

Clearly, the N eigenvalues of the matrix (B~ + B2 + B3), the N eigenvalues of 
(B~ + o~*B2 + ~oB3), and the N eigenvalues of (B1 + ~B2 + ~*B3) together 
constitute the complete spectrum of A(G~). Furthermore, since Eq. (6) is the 
complex conjugate of Eq. (5) and e is real, the eigenvalues of the matrices (B~ + 
w'B2 + oJB3) and (B1 + coB2 + o~*B3) are identical. Thus the graphs which have 
as their respective adjacency matrices (B1 + B2 + Ba) = B~ and (BI + o~B2 + 
~o*Ba) = Be are the subspectral components of G1. 

The relationship between the form of B~ and Be and the rules for constructing the 
component graphs G~,I and G~,~ may be clarified by means of the following 
examples. Consider first the benzene graph (III) and its adjacency matrix (0100)()  00 

10 10 B~ B2 B3 

O0 = B~ B1 B 2 "  A(III) = 01 01 
00 10 10 
00 01 01 B2 B3 B1 
10 00 10 

Notice that (B~)12 
(B3)12 = 1, since rl 

B a = ( B I +  B2+B3)  = (~ 20) 

(o 1 B~ = (B1 + ~B2 + co*Ba) = 
+oJ 0 

= (Bz)21 = 1, since rl is adjacent to r2, and that (B2)~1 = 
is adjacent to t2 and r2 to sl. Thus, Ba and Be have the form 
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These matrices can be considered adjacency matrices for the edge-weighted graphs 
G~(III) and Ge(IlI). 

As a second example, the graph II  has the adjacency matrix 

A ( I I )  = 

(0110) ( )  10 
10 00 00 B1 B2 Ba 
10 01 10 = Ba B1 B2 �9 
00 10 00 
10 10 01 B2 B8 B1 
00 00 10 

The nonzero elements of B~ are (B~)12 = (B~)21 = 1, since rl is connected to r2; 
the nonzero elements orB2 and B3 are (B2)11 = (B3)11 = 1, because r~ is connected 
to both sx and h.  Ba and Be are therefore given by 

~ 

Again, these may be considered the adjacency matrices of the vertex-weighted 
graphs Ga(II) and Ge(II). The origin of rules (1) through (3) for constructing the 
component graphs of composite graphs of the form of G1 should now be apparent. 

Suppose the composite graph of interest is identical to a graph of the form of G1 
except that it contains an additional vertex q which lies on the axis of rotation; 
let this graph be denoted by G2. The adjacency matrix of G2 can be written in the 
form 

A(G2)  = ID D D D 1 D r B1 B2 Ba 

D r Ba B1 B2 " 

r B2 Ba B1 

The nonzero element of the 1 x Nvector D represents the edge between q and each 
of the sets r, s, and t; the elements of the N x N submatrices B1. B2, and Ba 
represent the adjacency relationships within and among the sets r, s, and t, as 
previously described. 

The matrix representing threefold rotation must now be written as 

(i ~ ~ :) C' = 1 0 O0 , ,  
= ( C ~ )  , 

0 0 oJ 

0 o.,*1 
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since rotation about the threefold axis leaves q unaffected. The eigenvalue equation 
for A(G2), 

A(Gz) = e u 

(where p is the coefficient of the vertex q), becomes under unitary transformation: 

D r B1 oJ*Ba o~B2 : = . e I1 

~oD r ~oB2 B1 oJ*B3] ~ow ~ow 

\co*D r co*B3 oJBz B 1 /  o~*v r 

Performance of the multiplication gives 

Du + (co*D)(ww) + (coO)(co*v) = ep  (7) 

Drp + Blu + (oJ*Bs)(oJw) + (oJBz)(co*v) = eu (8) 

o~Drp + (wB2)u + Bl(cow) + (co*B3)(co*v) = e~ow (9) 

co*DTp + (oJ*B3)u + (~oB2)(o~w) + B~(oJ*v) = eoJ*v. (10) 

Once again, Eqs. (8) through (10) may be combined in several ways. Consider first 
a simplified form of Eq. (7) and the linear combination (8) + o~*(9) + oJ(10): 

D (u + v + w) = ep 

3Orp + (B1 + B2 + B3)(u + v + w) = e(u + v + w). (11) 

From (7) and (11) can be reconstructed the matrix equation 

(0 ~ I ( ' t ( ' I  3D r BI + B2 + Ba u + v + w u + v + w 

which implies that (N + 1) of the (3N + 1) eigenvalues of G2 are also eigenvalues 
of a graph Ga,2 which has as its adjacency matrix 

(0 D I" 
3D r B1 + B2 + Ba 

It is evident from the form of this matrix that Ga,z is identical to G~,~ except that 
the former contains a directed edge of weight 3 from an r vertex to q and a directed 
edge of unit weight from q to the r vertex. Since these directed edges between r 
and q do not belong to a cycle in Ga,2 only the product of their weights is of interest 
(see Appendix), and therefore they may be replaced by two directed edges weighted 
a/3 each, or, equivalently, by a single undirected edge weighted ~/3. 

Consider next a second, linearly independent combination of Eqs. (8) through 
(10), (8) + (9) + (10): 
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(1 + ~o + o~*)D~p + (B~ + ~1~ + ,o*B~)(u + o~w + o~*v) = ~(u + o~w + o~*v). 
(12) 

Since (w + ~o*) = - 1 ,  Eq. (12) reduces to Eq. (6); the second subspectral com- 
ponent of G2 has as its adjacency matrix (B1 + coB2 + o~*B3) = Be and is therefore 
identical to G~,~. Rules (1) through (4) for constructing the subspectral components 
of a composite graph of the form of G2 follow immediately from this analysis. 

4. Conclusion 

It should be noted that the mathematical manipulations employed here can be 
applied to the treatment of graphs which have other kinds of rotational symmetry. 
By numbering the vertices of such graphs in a manner consistent with their sym- 
metry properties, and by choosing an appropriate matrix by which to perform the 
unitary transformation, rules may easily be developed for constructing all the 
subspectral components of the symmetric composite graphs of interest. In fact, 
the rules given in [11] for constructing the components of graphs having twofold 
symmetry arise from matrix manipulations which represent a special case of a 

unitary transformation by C 2 =  (~ ~), since C2 commutes with A(G) in  that 

particular case. Those rules, not originally applicable to a graph which contains 
one or more vertices lying on the C2 axis or plane of symmetry, can now be extended 
to graphs of that form by a treatment analogous to the one used in the second 
part of Sect. 3 of this paper. (The subspectral components constructed by the 
extended rules are identical to McClelland's A- and B-fragments for such a graph.) 
The general treatment presented here should prove useful for the further investiga- 
tion of graph spectral regularities. 

Appendix 

By definition, the characteristic determinant of an N • N adjacency matrix is the 
sum of N! products of the form aljla2j~. �9 �9 aNjN; that is, 

det (A - xl)  = ~ (sign cr)aljl...aNjN 
t7 

where a represents some permutation (j~J2" iN) of the N elements (1 2 . . . N )  
and sign a = + 1, according to the parity of the permutation. 

Clearly, a given product aljla2j2...aNj,, is nonzero if and only if every element 
a,j, is nonzero, that is, if and only if there is a directed edge from vertex i to vertex 
j i  (i ~ J0 in the graph described by A. (Recall that all diagonal elements a** are 
equal to - x.) 

Suppose that the graph of interest contains a pair of weighted directed edges 
between vertices k and m. If  these edges do not belong to a cycle, then the charac- 
teristic determinant of A will contain a nonzero term of the form 1 a~jla2j2... 

1 See the discussion of Graovac et al. on page 19 of Ref. [12]. 
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a~raam~...a~ry N. Since the numerical value o f  this product  is aumara~, one may  
substitute for  the original directed edges between vertices k and m a pair of  directed 
edges weighted a / a ~ - - ~  each or, equivalently, a single u n d i r e c t e d  edge weighted 
V/akmamk, without  affecting the value o f  det (.4 - x l )  or, consequently, the eigen- 
values o f  A. 

If, on the other hand, the directed edges between vertices k and m do belong to a 
cycle, then the expansion of  the characteristic determinant  o f  A will contain two 
additional nonzero  terms of  the form a12a28" �9 "akin" �9 "a~l and a l u .  �9 "amk" �9 "a32a21, 

corresponding to clockwise and counterclockwise circulations about  the cycle. 
In  this case, akin and aratc contribute individually to terms in the characteristic 
polynomial,  and therefore there can be no substitutions for  the original weighted 
edges. 
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